
Chapter ��

Structures and Unions

So far� we have seen one kind of compound �user de	ned� data type � the array and in Chapters
� and � have seen how we can group information into one common data structure� However� the
use of arrays is limited to cases where all of the information to be grouped together is of the same
type� In this chapter we present the other compound data type provided in C � the structure�
which removes the above limitation� We will discuss structures� pointers to structures� and arrays
of structures� As with our previous data types� we will see how such structures can be declared�
how information in them can be accessed� and how we can pass and return structures in functions�
We will also see how arrays of structures are sorted and searched� We illustrate these points with
several example programs�

Finally� we will introduce unions which are similar to structures� however� the elements in the
union share the same memory cells� In a union� di�erent types of data may be stored in a variable
but at di�erent times�

���� Structures

In C� a structure is a derived data type consisting of a collection of member elements and their
data types� Thus� a variable of a structure type is the name of a group of one or more members

which may or may not be of the same data type� In programming terminology� a structure data
type is referred to as a record data type and the members are called fields� �We will use these
two terms interchangebly��

������ Declaring and Accessing Structure Data

As with any data type� we need to be able to declare variables of that type� In particular for
structures� we must specify the names and types of each of the 	elds of the structure� So� to
declare a structure� we need to describe the number and types of 	elds in the form of a template�
as well as declare variables of that type� We illustrate with an example� a program that maintains
temperatures in both celsius and fahrenheit degrees� A variable� temp� is to be used to maintain
the equivalent temperatures in both celsius and fahrenheit� and thus requires two 	elds� both of
them integers� We will call one 	eld ftemp for fahrenheit temperature and the other ctemp for
celsius� The program� shown in Figure ����� reads a temperature to the ftemp 	eld of the variable�
temp� and uses a function� f to c�
� to convert the temperature from fahrenheit to celsius and
store it in the ctemp 	eld� In looking at this program� we see that the variable temp is declared

���

��� CHAPTER ��� STRUCTURES AND UNIONS

�� File� fctemp�c

Program reads temperature in fahrenheit� converts to celsius� and

maintains the equivalent values in a variable of structure type�

��

�include �stdio�h�

main�

� struct trecd �

float ftemp�

float ctemp�

� temp�

double f�to�c�double f
�

char c�

printf�����Temperatures � Degrees F and C����n�n�
�

printf��Enter temperature in degrees F � �
�

scanf���f��"temp�ftemp
�

temp�ctemp � f�to�c�temp�ftemp
�

printf��Temp in degrees F � ���	f�n�� temp�ftemp
�

printf��Temp in degrees C � ���	f�n�� temp�ctemp
�

�

�� This routine converts degrees F to degrees C ��

double f�to�c�double f

�

return��f � ���

 � ��
 � ��

�

�

Figure ����� Code for Simple Structure Program

����� STRUCTURES ���

temp

ftemp ctemp

Figure ����� Structure Variable temp in Memory

to be of structure type with the declaration statement�

struct trecd �

float ftemp�

float ctemp�

� temp�

This statement consists of the keyword� struct� followed by the description of the template for
the structure and then the variable name� The description of the template� in our example�
consists of a tag �or name	� trecd which names the template� followed by a bracketed list of
eld
declarations� The tag is optional� Within its scope� the tag can be used to refer to this structure
template without specifying the
elds again� explicitly� The bracketed list declares the
elds of
the structure giving a type followed by an identi
er� Our example shows that this structure has
two
elds� ftemp and ctemp� both of type float�

Figure ���� shows the memory cells allocated to the variable temp� Two float cells have been
allocated� one referred to as the ftemp
eld and the other as ctemp� The entire block of memory
is referred to by the variable name� temp� Otherwise� structure declarations are the same as any
other variable declaration and have the same scope as would an int declaration� for example�

To access the information in a structure� the variable name �in our case� temp	 is quali�ed using
the �dot� operator ��	 followed by the
eld name�

temp�ftemp

temp�ctemp

In general� the syntax for accessing a member of a structure is�

�variable identi�er���member identi�er�

In a program� members of a structure variable may be used just like other variables� In the
function main�� above� the argument to scanf�� is �temp�ftemp which is the address of the
oat
cell� temp�ftemp� �Precedence of the dot operator is higher than that of the address operator
so no parentheses are needed in this case	� The numeric value read by scanf�� will be stored
where the argument points � it will be stored in the cell temp�ftemp� The rest of the program is
straight forward� We have passed a double value to the function f to c and get a double result
which we assign to temp�ctemp and print the results�

Sample Session�

			Temperatures
 Degrees F and C			

��� CHAPTER ��� STRUCTURES AND UNIONS

Enter temperature in degrees F � ��

Temp in degrees F �
���

Temp is degrees C � ����

As we have said� the members of a structure variable can be of di�erent types� For example�

struct �

char name�����

int id�number�

� student�

which de
nes a structure variable� student� with two
elds� a string of characters called name�
and an integer called id number� Enough contiguous memory is allocated for the variable student
to accommodate both
elds� We can
nd the amount of storage allocated for a structure by using
the sizeof operator� �Be aware that the total size of a structure variable may not be equal to
the sum of the sizes for the
elds because of rules about memory alignment which may vary from
computer to computer� For example� memory allocation for an integer may have to start at a
machine word boundary such as an even byte address� Such alignment requirements may make
the size of a structure variable somewhat greater than the sum of the
eld sizes	�

The identi
ers used for the
eld names apply only to variables of that structure type� Di�erent
structure types may have
elds speci
ed by the same identi
er� but these are distinct cells� uniquely
accessed by an appropriate structure variable name quali
ed by a
eld names� In addition� only

eld names declared in the structure template can be used to qualify a variable name� And
nally�
a
eld name may not be used by itself � it must always qualify an appropriate structure variable�
Consider the following examples of structure variable declarations�

struct �

char f�name�����

char m�inits����

char l�name�����

int id�no�

int b�month�

int b�day�

int b�year�

� person� manager�

struct �

int id�no�

float cost�

float price�

� part�

Here we have declared two variables� person and manager� to be structures with seven
elds�
some integers� some strings� In this case� two separate instances of the template are allocated� so
person�id no and manager�id no are distinct storage cells� We have also de
ned a variable� part�
whose template also has a id no
eld name� But this is also a distinct storage location accessed by
part�id no� However� with these declarations� it is NOT legal to refer to the cost
eld of person
�person�cost	 or the

�
day of a part �part�b day	� Similarly� referring to f name or price is

����� STRUCTURES ���

not legal without a variable name of the appropriate type to be quali
ed� Here are some legal
examples of structure usage�

part�id�no � ���

part�cost � ������

if �strcmp�person�f�name� �Helen�� �� ��

printf��Last name is �s�n�� person�l�name��

printf��This is the cost �d�n��part�cost��

part�price � part�cost 	 ����

The only legal operations allowed on a structure variable are
nding the address of the memory
block using �� accessing its members� and copying or assigning it as a unit as long as the variables
are of an identical structure type� for example�

manager � person�

������ Using Structure Tags

As we said above� declaring a structure variable requires two things � describing the template for
the structure� and declaring variables of that structure type� It is also possible to perform these
two steps in separate statements in a program� That is declare just a structure template with a
tag without any variables declared� and later� declare variables of the structure type identi
ed by
the tag� For example� this declaration�

struct stdtype �

char name�����

int id�number�

��

speci
es a template with a tag for a structure type� stdtype� �Observe the semicolon after the
declaration for the declaration	� Such a declaration does NOT allocate memory� since no variables
are declared� it merely de
nes a template for variables declared later� Within the scope of the tag
declaration� we can then declare stdtype structure variables like�

struct stdtype x� y� z�

This declaration allocates memory for three variables� x� y and z� of type structure stdtype�
i�e�
tting the template de
ned earlier� Some additional examples of structure tag and variable
declarations are�

�	 named structure template� no variables declared 	�

struct date �

int month�

int day�

int year�

��

�	 named structure template and a variable declared 	�

��� CHAPTER ��� STRUCTURES AND UNIONS

struct stu�rec �

char name�����

char class�id����

int test����

int project�

int grade�

� student�

struct stu�rec ee�stu� me�stu�

struct date today� birth�day�

The main advantage of splitting the template de
nition from variable declaration is that the
template need be de
ned only once and may then be used to declare variables in many places� We
will see the utility of this below when we pass structures to function�

In general� then� a structure declaration has the following syntax�

struct ��tag identi�er�� f
�type speci�er� �identi�er��
�type speci�er� �identi�er��
� � �
g ��identi�er��� �identi�er�� � � ���

where the �tag identi�er� and variable identi
ers are optional� Once a template has been de
ned�
additional variables of the structure type may be declared by�

struct �tag identi�er� �identi�er��� �identi�er�� � � ��

The types of the
elds of the structure may be any valid C type� a scalar data type �int� float�
etc�	� an array� or even a structure� This means that nested structure types can also be declared�

struct inventory �

int item�no�

float cost�

float price�

struct date buy�date�

��

struct car�type�

struct inventory part�

struct date ship�date�

int shipment�

� car�

Here� the ship date
eld of the car type structure is itself a date structure �from above	 and
the part
eld is an inventory structure� with item no� cost� etc�
elds� including yet another
date structure within� The members for nested structures may be accessed with dot operators
applied successively from left to right �the grouping for the dot operator is from left to right	�
Thus�

����� STRUCTURES ���

car�ship�date�month � �� �	 Lvalue is �car�ship�date��month 	�

car�part�buy�date�month � ���

these assignments refer to the month
eld of the ship date
eld of the variable car and the month

eld of the buy date
eld of the part
eld of the variable� car� respectively�

Both the variables of structure type and the structure tags are frequently referred to as struc�
tures� Thus� we may refer to date as a structure� and we may say that the variable� today is a
structure� It is usually clear from the context whether a structure tag or a variable of structure
type is meant� However� for the most part� we will use the term structure for the templates them�
selves� i�e� tags� and� we will specify variables to be of structure type� Thus� date is a structure�
and today is a structure variable or a variable of structure type� i�e� of type� struct date�

As with other data types� structures can be initialized in declarations by specifying constant
values for the structure members within braces� The initializers for structure members are sepa�
rated by commas as for an array� For example� a struct inventory item can be declared�

struct inventory part � � ���� ������ ����� ��

which initializes member� part no to ���� member cost to ������ and member price to ������
As another example� a label item can be declared as�

struct name �

char f�name�����

char m�inits����

char l�name�����

��

struct address �

char street�����

char city�����

char state�����

int zip��

��

struct label �

struct name name�

struct address address�

��

struct label person � � ��Jones�� �John�� �Paul���

���� Dole Street�� �Honolulu�� �Hawaii�� ������ ��

The structure� label has two members� each of which is a structure� The
rst member� name�
has three members� and the second member� address� has four members� Initialization for each
member structure is nested appropriately�

������ Structures and Functions

Structure variables may be passed as arguments and returned from functions just like scalar
variables� Let us consider an example that reads and prints a data record for a part� The record

��� CHAPTER ��� STRUCTURES AND UNIONS

consists of the part number� its cost and retail price� �In a later section� we will see how an
inventory for a list of parts can be maintained	� The code to read and print a single part structure
is shown in Figure ����� Notice we have declared the structure template� inventory� at the head
of the source
le� This is called an external declaration and the scope is the entire
le after the
declaration� Since all the functions in the
le use this structure tag� the template must be visible
to each of them� The driver calls read part�� to read data into a structure and return it to be
assigned to the variable� item� Next� it calls print part�� passing item which merely prints the
values of the structure
elds� one at a time� The program is straightforward� A sample session is
shown below�

			Part Inventory Data			

Part Number� ����

Cost� ����

Price� ��

Part no� � ����� Cost � ������ Retailprice ������

External declarations of structure templates and prototypes facilitate consistent usage of tags
and functions� As a general practice� we will declare structure templates externally� usually at the
head of the source
le� Sometimes� external structure tag declarations will be placed in a separate
header
le� which is then made part of the source
le by an include directive�

From this example� we can see that using structures with functions is no di�erent than using
any scalar data type like int� However� let us consider what really happens when the program
runs� When the function read part�� is called� memory is allocated for all of its local variables�
including the struct inventory variable� part� As each data item is read� it is placed in the
corresponding
eld of part� accessed with the dot operator� The value of part is then returned
to main�� where it is assigned to the variable item� As would be the case for a scalar data type�
the value of the return expression is copied back to the calling function� Since this is a structure�
the entire structure �each of the
elds	 is copied� For our inventory structure� this isn�t too bad
� only two
oats and an integer� If the structure where much larger� maybe including nested
structures and arrays� many values would need to be copied�

Likewise with the call to print part��� Here� an inventory structure is passed to the function�
Recall that in C� all parameters are passed by value � the value of each argument expression is
copied from the calling function into the cell allocated for the parameter of the called function�
Again� for large structures� this may not be a very e�cient way to pass data to functions� In the
next section we see a way to remedy this problem�

������ Pointers to Structures

As we saw in the last section� passing and returning structures to functions may not be e�cient�
particularly if the structure is large� We can eliminate this excessive data movement by passing
pointers to the structures to the function� and access them indirectly through the pointers� Figure
���� shows a modi
ed version of our previous program which uses pointers instead of passing entire
structures�

The code is very similar to Figure ����� but we have changed the prototypes and functions to
work with pointers� The argument of read part�� is a pointer to the inventory structure� item

����� STRUCTURES ���

�	 File� part�c

This program reads and prints inventory data for a part�

	�

�include stdio�h!

struct inventory �

int part�no�

float cost�

float price�

��

struct inventory read�part�void��

void print�part�struct inventory part��

main��

� struct inventory item�

printf��			Part Inventory Data			�n�n���

item � read�part���

print�part�item��

�

�	 Prints data for a single part� 	�

void print�part�struct inventory part�

�

printf��Part no� � �d� Cost � ����f� Retail price � ����f�n��

part�part�no� part�cost� part�price��

�

�	 Reads data for a single part structure and returns the

structure�

	�

struct inventory read�part�void�

� int n�

float x�

struct inventory part�

printf��Part Number� ���

scanf���d�� �n��

part�part�no � n�

printf��Cost� ���

scanf���f�� �x��

part�cost � x�

printf��Price� ���

scanf���f�� �x��

part�price � x�

return part�

�

Figure ����� Code for Reading and Printing a Single Part

��� CHAPTER ��� STRUCTURES AND UNIONS

�	 File� part�c

This program reads and prints inventory data for a part�

	�

�include stdio�h!

struct inventory �

int part�no�

float cost�

float price�

��

void read�part�struct inventory 	 partptr��

void print�part�struct inventory 	 partptr��

main��

� struct inventory item�

printf��			Part Inventory Data			�n�n���

read�part��item��

print�part��item��

�

�	 Prints data for a single part pointed to by partptr� 	�

void print�part�struct inventory 	 partptr�

�

printf��Part no� � �d� Cost � ����f� Retail price � ����f�n��

�	 partptr��part�no� �	 partptr��cost� �	 partptr��price��

�

�	 Reads data for a single part into an object pointed to

by partptr�

	�

void read�part�struct inventory 	 partptr�

� int n�

float x�

struct inventory part�

printf��Part Number� ���

scanf���d�� �n��

�	 partptr��part�no � n�

printf��Cost� ���

scanf���f�� �x��

�	 partptr��cost � x�

printf��Price� ���

scanf���f�� �x��

�	 partptr��price � x�

�

Figure ����� Code for Reading and Printing a Part Using Pointers

����� STRUCTURES ���

declared in main��� The function accesses the object pointed to by partptr� and uses the dot
operator to access a member of that object� Since partptr points to an object of type struct

inventory� we dereference the pointer to access the members of the object�

�	partptr��part�no

�	partptr��cost

�	partptr��price

Similar changes have been made to print part��� Note� the parentheses are necessary here
because the � operator has higher precedence than the indirection operator� 	� We must
rst
dereference the pointer� and then select its appropriate member�

Since� for e�ciency� pointers to structures are often passed to functions� and� within those
functions� the members of the structures are accessed� the operation of dereferencing a structure
pointer and a selecting a member is very common in programs� Therefore� C provides a special
pointer operator� � �� �called arrow	 to access a member of a structure pointed to by a pointer
variable� The operator is a minus symbol�
� followed by a greater�than symbol� �� This operator
is exactly equivalent to a dereference operation followed by the � operator as shown below�

partptr��part no �� �	partptr��part no

partptr��cost �� �	partptr��cost

partptr��retail �� �	partptr��price

The left hand expressions are equivalent ways of writing expressions on the right hand side� e�g�
prtptr� �member accesses the member of an object pointed to by partptr� Our code for
read part�� could use the following alternative expressions�

partptr
!part�no � n�

partptr
!cost � x�

partptr
!price � x�

The general syntax for using the arrow operator is�

�variable identi�er� � ��member identi�er�

which is equivalent to�

�	 �variable identi�er�
��member identi�er�

We now consider an example using nested structures� The program reads and prints data for a
single label consisting of members that are themselves structures� The
rst member is a structure
for a name� the second is a structure for an address� This program is organized in several source
and header
les as shown in Figure ����� �We intend to use the functions in these
les for other
programs as well	�

The driver calls the function readlabel�� to read in the label data� and the function printlabel��
to print the label data� Like the previous example� in both function calls� we assume that a pointer
to a struct label variable is passed as an argument� In the functions� we will use the pointer
operator� � �� to access the members of the object pointed to by the pointer� The function
prototypes are shown in the header
le lblutil�h� The functions are shown in Figure ����

The formal parameter in the functions readlabel�� and printlabel�� are both a pointer�
called pptr� which points to an object of type struct label� Each function accesses the first

eld of the name
eld of the object pointed to by pptr as follows�

��� CHAPTER ��� STRUCTURES AND UNIONS

�	 File� lbl�h

This file contains structure tags for labels� Label has two members�

name and address� each of which is a structure type�

	�

struct name�recd �

char last�����

char first�����

char middle�����

��

struct addr�recd �

char street�����

char city�����

char state�����

long zip�

��

struct label �

struct name�recd name�

struct addr�recd address�

��

�	 File� lblutil�h 	�

void printlabel�struct label 	 personptr��

int readlabel�struct label 	 personptr��

�	 File� lbl�c

Other Source Files� lblutil�c

Header Files� lbl�h� lblutil�h

This program reads and prints data for one label�

	�

�include stdio�h!

�include �lbl�h�

�include �lblutil�h�

main��

� struct label person�

printf��			Label Data for a Person			�n�n���

readlabel��person��

printf���nLabel Data��n���

printlabel��person��

�

Figure ����� Driver and Header Files for Label Program

����� STRUCTURES ���

�	 File� lblutil�c 	�

�include stdio�h!

�include �lbl�h�

�include �lblutil�h�

�define FALSE �

�define TRUE �

�	 This routine prints the label data� 	�

void printlabel�struct label 	 pptr�

�

printf���n�s �s �s�n�s�n�s �s �ld�n��

pptr
!name�first�

pptr
!name�middle�

pptr
!name�last�

pptr
!address�street�

pptr
!address�city�

pptr
!address�state�

pptr
!address�zip��

�

�	 This routine reads the label data� 	�

int readlabel�struct label 	 pptr�

� int x�

printf��Enter Name First Middle Last!� EOF to quit� ���

x � scanf���s �s �s�	c��pptr
!name�first�

pptr
!name�middle�

pptr
!name�last��

if �x �� EOF�

return FALSE�

printf��Enter Street Address� ���

gets�pptr
!address�street��

printf��Enter City State Zip� ���

scanf���s �s �ld�	c��pptr
!address�city�

pptr
!address�state�

��pptr
!address�zip���

return TRUE�

�

Figure ����� Code for Label Utility Functions

��� CHAPTER ��� STRUCTURES AND UNIONS

pptr
!name�first

Remember� this is the same as�

�	pptr��name�first

which means pptr is
rst dereferenced� the name
eld of the dereferenced object is accessed next�
and
nally the first
eld of name is accessed �the dot operator groups from left to right	� Similarly�
other members of the object pointed to by pptr are accessed by�

pptr
!name�middle

pptr
!name�last

pptr
!address�street

pptr
!address�city

pptr
!address�state

pptr
!address�zip

All the above members� except zip� are strings� In readlabel��� scanf�� expects to be passed
pointers to objects to store the data read� Since all the string members are already pointers� we
need to use the address operator only when we pass the pointer to pptr
!address�zip� Notice�
we use the suppression conversion� �	c� to discard the newline character at the end of each line�
Thus� after the name is read� gets�� reads the street address correctly� The function returns
TRUE if a label is read successfully� and FALSE otherwise� i�e� when an EOF is entered by the
user for the name� indicating that no label data is available� The function printlabel�� could
have been passed the structure variable itself since it merely needs to print the values of the
members� however� as we discussed above� passing a pointer avoids the expense of copying the
entire structure� Here is a sample session�

			Label Data for a Person			

Enter Name First Middle Last!� EOF to quit� John Paul Jones

Enter Street Address� �� Dole Street

Enter City State Zip� Honolulu Hawaii 	
���

Label Data�

John Paul Jones

�� Dole Street

Honolulu Hawaii �����

���� Arrays of Structures

The inventory and the label program examples of the last section handle only a single record�
More realistically� a useful program may need to handle many such records� As in previous cases
where we needed to store a list of items� we can use an array as our data structure� In this case�
the elements of the array are structures of a speci
ed type� For example�

����� ARRAYS OF STRUCTURES ���

part no cost price

table����� ��� ����� �����
table����� � � �
table����� � � �
table����� � � �

Figure ����� A Table of Part Records

struct inventory �

int part�no�

float cost�

float price�

��

struct inventory table����

which de
nes an array with four elements� each of which is of type struct inventory� i�e� each
is an inventory structure�

We can think of such a data structure as a tabular representation of our data base of parts
inventory with each row representing a part� and each column representing information about that
part� i�e� the part no� cost� and price� as shown in Figure ����� This is very similar to a two
dimensional array� except that in an array� all data items must be of the same type� where an
array of structures consists of columns� each of which may be of a distinct data type� As with any
array� the array name used by itself in an expression is a pointer to the entire array of structures�
Therefore� the following are equivalent ways of accessing the elements of the array�

��table	 table���
�table � �	 table���
�table � �	 table���
�table � �	 table���

With this in mind� let us extend out address label program from Section ������ to read and
print a list of labels� The code is shown in Figure ���� and uses the same structures and functions
used in program lbl�c included in
les lbl�h and lblutil�c�

In the program� the reading of labels is still performed by readlabel��only now in a while loop�
The loop terminates when either MAX number of labels have been read or readlabel�� returns
FALSE at end of
le� In this case� a new label is not read� but the value of n is incremented anyway
by the "" operator� Thus� if the loop is terminated because of an end of
le� the incremented
value of n must be decremented to correctly indicate the number of entries in the array� Finally�
labels are printed using printlabel�� in a loop�

Sample Session�

			Labels
 Input�Output			

��� CHAPTER ��� STRUCTURES AND UNIONS

�	 File� labels�c

Other Source Files� lblutil�c

Header Files� lbl�h� lblutil�h

This program reads in a set of labels� and prints them out�

	�

�define MAX ���

�include stdio�h!

�include �lbl�h� �	 declarations for the structures 	�

�include �lblutil�h� �	 prototypes for routines in file lblutil�c 	�

main��

� struct label person�MAX��

int i� n�

printf��			Labels
 Input�Output			�n�n���

n � ��

�	 read the labels 	�

while �n MAX �� readlabel��person�n""���

�

if �n �� MAX�

printf��Labels full
 printing labels�n���

else

n� �	 EOF encountered for last value of n 	�

�	 print out the labels 	�

printf���nLabel Data��n���

for �i � �� i n� i""�

printlabel��person�i���

�

Figure ����� Driver for Address Label Program

����� ARRAYS OF STRUCTURES ���

Enter Name First Middle Last!� EOF to quit� John Paul Jones

Enter Street Address� �� Dole Street

Enter City State Zip� Honolulu Hawaii 	
���

Enter Name First Middle Last!� EOF to quit� David Charles Smith

Enter Street Address� �� University Ave

Enter City State Zip� Honolulu Hawaii 	
��

Enter Name First Middle Last!� EOF to quit� �D

Label Data�

John Paul Jones

�� Dole Street

Honolulu Hawaii �����

David Charles Smith

�� University Ave

Honolulu Hawaii �����

Next� let us revise the payroll program so that a payroll data record is stored in a structure
called payrecord� Let us also de
ne a type called payrecord for the structure data type that
houses a payroll data record�

typedef struct payrecord payrecord�

We may� thus� declare variables of type payrecord rather than struct payrecord� The name for
the structure tag and the de
ned data type can be the same as shown� The structure de
nitions
and typedef are placed in the
le payrec�h and shown in Figure �����

The program logic is simple enough � it reads input data� calculates payroll data� and prints
payroll data as before� In this implementation� we will also include calculation of tax withheld�
The result is that we have gross pay� net pay� and tax withheld as additional items in payroll data
records as seen in the structure de
nitions� The program also keeps track of totals for gross and
net pay disbursed as well as for taxes withheld� The totals are printed as a summary statement
for the payroll� Figure ����� shows the main driver�

The function readrecords�� reads the input data records into an array and returns the number
of records read� printrecords�� prints all payroll data records� and printsummary�� prints the
totals of gross pay and taxes withheld� Finally� we need calcrecords�� to calculate pay for each
of the records� These functions are shown in Figures ����� and ������

In the code� we use functions readname�� and printname�� to read and print an individual
name for each record� Finally� we must write calcrecords�� which calculates the pay for each
data record and the totals of gross pay and tax withheld� The tax is calculated on the following
basis�

If the total pay is ��� or less� the tax is ��!�

If the total is ���� or less� the tax is ��!�

If the total is over ����� the tax is ��!�

��� CHAPTER ��� STRUCTURES AND UNIONS

�	 File� payrec�h 	�

�	 This file contains structures and data type definitions needed for

the program in file payrec�c�

	�

struct namerecd �

char last�����

char first�����

char middle�����

��

struct payrecord �

int id�

struct namerecd name�

float hours�

float rate�

float regular�

float overtime�

float gross�

float tax�withheld�

float net�

��

typedef struct payrecord payrecord�

Figure ����� Data Structure De
nitions for Payroll Program

����� ARRAYS OF STRUCTURES ���

�	 File� payrec�c

Header Files� payrec�h

This program computes payroll and prints it� Each data record is

a structure� and the payroll is an array of structures� Tax is

withheld ��� if weekly pay is below ���� ��� if pay is below �����

and ��� otherwise� A summary report prints out the total gross

pay and tax withheld�

	�

�include stdio�h!

�include �payrec�h�

�define MAX ��

void printsummary�double gross� double tax��

int readrecords�payrecord payroll��� int lim��

void printrecords�payrecord payroll��� int n��

double calcrecords�payrecord payroll��� int n� double 	 taxptr��

main��

� int i� n � ��

payrecord payroll�MAX��

double gross� tax � ��

printf��			Payroll Program			�n�n���

n � readrecords�payroll� MAX��

gross � calcrecords�payroll� n� �tax��

printrecords�payroll� n��

printsummary�gross� tax��

�

Figure ������ Driver for Payroll Program

��� CHAPTER ��� STRUCTURES AND UNIONS

�	 File� payrec�c
 continued 	�

�	 Function prints total gross pay and total tax withheld� 	�

void printsummary�double gross� double tax�

�

printf���n			SUMMARY			�n�n���

printf��TOTAL GROSS PAY � #����f� TOTAL TAX WITHHELD � #����f�n��

gross� tax��

�

�	 Function reads payroll input data records until EOF or until lim

records have been read�

	�

int readrecords�payrecord payroll��� int lim�

� int i� n� x�

float z�

void readname�payrecord payroll��� int i��

for �i � �� i lim� i""� �

printf��Id Number�EOF� ���

x � scanf���d�	c�� �n��

if �x �� EOF� return i�

payroll�i��id � n�

readname�payroll� i��

printf��Hours Worked� ���

x � scanf���f�	c�� �z��

payroll�i��hours � z�

printf��Rate of Pay� ���

x � scanf���f�	c�� �z��

payroll�i��rate � z�

�

return i�

�

�	 Function reads a single name� 	�

void readname�payrecord payroll��� int i�

�

printf��Last Name� ���

gets�payroll�i��name�last��

printf��First Name� ���

gets�payroll�i��name�first��

printf��Middle Name� ���

gets�payroll�i��name�middle��

�

Figure ������ Code for Payroll Program Functions

����� ARRAYS OF STRUCTURES ���

�	 Prints a single name� 	�

void printname�payrecord payroll��� int i�

�

printf��Name� �s �s �s�n�� payroll�i��name�first�

payroll�i��name�middle�

payroll�i��name�last��

�

�	 Function prints n payroll records� 	�

void printrecords�payrecord payroll��� int n�

� int i� x�

float z�

void printname�payrecord payroll��� int i��

printf���n			PAYROLL REPORT			�n�n���

for �i � �� i n� i""� �

printf���nId Number� �d�n�� payroll�i��id��

printname�payroll� i��

printf��Hours Worked� ����f �� payroll�i��hours��

printf��Rate of Pay� ����f�n�� payroll�i��rate��

printf��PAY�n���

printf��Regular� ����f� Overtime � ����f� ��

payroll�i��regular� payroll�i��overtime��

printf��Gross � ����f� Net � ����f�n��

payroll�i��gross� payroll�i��net��

printf��TAX Withheld � ����f�n�� payroll�i��tax�withheld��

�

�

Figure ������ Code for Payroll Program Functions � continued

��� CHAPTER ��� STRUCTURES AND UNIONS

The function also keeps a cumulative sum of total gross pay and total tax withheld� Finally� it
returns total gross pay and indirectly returns the total tax withheld� The code is shown in Figure
������ Here is a sample interaction with the program�

			Payroll Program			

Id Number�EOF� ��

Last Name� Young

First Name� Cyrus

Middle Name� Lee

Hours Worked� ��

Rate of Pay� ��

Id Number�EOF� ��

Last Name� Jones

First Name� John

Middle Name� Paul

Hours Worked� ��

Rate of Pay� �
��

Id Number�EOF� �D

			PAYROLL REPORT			

Id Number� �

Name� Cyrus Lee Young

Hours Worked� ����� Rate of Pay� �����

PAY

Regular� ������� Overtime � ����� Gross � ������� Net � ��
���

TAX Withheld � �����

Id Number� ��

Name� John Paul Jones

Hours Worked� ����� Rate of Pay� �����

PAY

Regular� ������� Overtime � ��
���� Gross � ��
���� Net � ������

TAX Withheld � ������

			SUMMARY			

TOTAL GROSS PAY � # �������� TOTAL TAX WITHHELD � # ������

���� Sorting Arrays of Structures

We can make one more small improvement to our address label program� Often when we want
to print labels� we would like to print them in some sorted order� In this section we will write
a function to sort the array of label structures� As we saw in Chapter ��� an array is sorted
by some key� that is� for an array of structures� by a speci
c member of the structure� A list of

����� SORTING ARRAYS OF STRUCTURES ���

�	 File� payrec�c
 continued 	�

�	 This function computes regular and overtime pay� and the tax to be

withheld� Tax withheld is ��� of gross pay if not over #���� ��� of

gross if not over #����� and ��� of gross otherwise� The function also

cumulatively sums total gross pay and total tax withheld�

	�

double calcrecords�payrecord payroll��� int n� double 	 taxptr�

� int i�

double gross � ��

	taxptr � ��

for �i � �� i n� i""� �

if �payroll�i��hours � ��� �

payroll�i��regular � payroll�i��gross �

payroll�i��hours 	 payroll�i��rate�

payroll�i��overtime � ��

�

else �

payroll�i��regular � �� 	 payroll�i��rate�

payroll�i��overtime � �payroll�i��hours
 ��� 	 ��� 	

payroll�i��rate�

�

payroll�i��gross � payroll�i��regular " payroll�i��overtime�

if �payroll�i��gross � ����

payroll�i��tax�withheld � ���� 	 payroll�i��gross�

else if �payroll�i��gross � �����

payroll�i��tax�withheld � ���� 	 payroll�i��gross�

else

payroll�i��tax�withheld � ���� 	 payroll�i��gross�

gross "� payroll�i��gross�

	taxptr "� payroll�i��tax�withheld�

payroll�i��net � payroll�i��gross
 payroll�i��tax�withheld�

�

return gross�

�

Figure ������ Code for calcrecords��

��� CHAPTER ��� STRUCTURES AND UNIONS

�	 File� lblutil�c
 continued 	�

�	 Sorts an array of labels person��� of size n� by last name

using an array of pointers plabel��� 	�

void sortlabels�struct label person��� struct label 	plabel��� int n�

� int i�

for �i � �� i n� i""�

plabel�i� � person " i�

sortptrs�plabel� n��

�

�	 Sorts pointers to labels by last name 	�

void sortptrs�struct label 	plabel��� int n�

� int j� maxpos� eff�size�

struct label 	ptemp�

for �eff�size � n� eff�size ! �� eff�size

� �

maxpos � ��

for �j � �� j eff�size� j""�

if �strcmp�plabel�j�
!name�last�

plabel�maxpos�
!name�last� ! ��

maxpos � j�

ptemp � plabel�maxpos��

plabel�maxpos� � plabel�eff�size
���

plabel�eff�size
�� � ptemp�

�

�

Figure ������ Utility Functions to Sort label Structures

labels may be sorted either by last name� or by zip code� or by street address� and so forth� Again�
considering the sorting algorithms in Chapter ��� we saw that sorting involves swapping data items
to place them in the correct order� However� like passing structures to functions� swapping entire
structures can be ine�cient if the structures are large� In addition� it is common that an array
of structures needs to be sorted by di�erent keys for di�erent purposes� To solve these problems�
we can use a technique we used in Chapter � for sorting two dimensional arrays � sorting the
data using an array of pointers� In this way� the swapping operations while sorting involve only
pointers� not entire records� and we can maintain several such pointer arrays� each sorted by a
di�erent key�

Figure ����� shows the code for the function sortlabels�� added to the
le lblutil�c which
sorts labels by last name using pointers� �The function assumes the label structure de
ned in
lbl�h� Section ������	� The function sortlabels�� is passed the array of labels� person�� and
an array of pointers to label structures� plabel��� This array should be declared in main�� as�

struct label 	plabel�MAX��

����� UNIONS ���

and passed to sortlabels�� in the call�

sortlabels�person�plabel�n��

after the person�� array is read� The function begins by initializing the elements of plabel��
to point to successive elements of the array of structures� person��� It then calls sortptrs�� to
sort the array by last name using these pointers using a selection sort algorithm� The only thing
to note is that for the comparison step of the sort� a structure element is accessed by�

plabel�j�
!name�last

which accesses the last
eld of the name
eld of the object pointed to by plabel�j�� In the swap
step of the sort algorithm� only the pointers are swapped�

We can now write a function� printsortedlabels��� to print the labels in sorted order using
the plabel�� array� modifying main�� appropriately� We leave this as an exercise�

The utility functions in the
le lblutil�c provide most of the tools needed to write a useful�
interactive address label data base program� In the next chapter� we discuss the remaining piece
�
le storage for the data base� and write the entire application�

���� Unions

In some applications� we might want to maintain information of one of two alternate forms� For
example� suppose� we wish to store information about a person� and the person may be identi
ed
either by name or by an identi
cation number� but never both at the same time� We could de
ne
a structure which has both an integer
eld and a string
eld� however� it seems wasteful to allocate
memory for both
elds� �This is particularly important if we are maintaining a very large list of
persons� such as payroll information for a large company	� In addition� we wish to use the same
member name to access identity the information for a person�

C provides a data structure which
ts our needs in this case called a union data type� A union
type variable can store objects of di�erent types at di�erent times� however� at any given moment
it stores an object of only one of the speci
ed types� The declaration of a union type must specify
all the possible di�erent types that may be stored in the variable� The form of such a declaration
is similar to declaring a structure template� For example� we can declare a union variable� person�
with two members� a string and an integer� If the name is entered� we will use person to store the
string� if an identi
cation number is entered� we will use person to store an integer� Here is the
union declaration�

union �

int id�

char name�����

� person�

This declaration di�ers from a structure in that� when memory is allocated for the variable person�
only enough memory is allocated to accommodate the largest of the speci
ed types� The memory
allocated for person will be large enough to store the larger of an integer or an �� character array�
Like structures� we can de
ne a tag for the union� so the union template may be later referenced
by name�

��� CHAPTER ��� STRUCTURES AND UNIONS

union human �

int id�

char name�����

� person�

Likewise� it is possible to declare just a tag� and later� use the tag to declare variables�

union human �

int id�

char name�����

��

union human person� 	ppers�

The syntax for declaring a union type is basically the same as for a structure�

union ��tag identi�er�� f
�type speci�er� �identi�er��
�type speci�er� �identi�er��
� � �
g ��identi�er��� �identi�er�� � � ���

The members of a union variable may be accessed in the same manner as are members of a
structure variable�

�union var���member�
�ptr to union var� � ��member�

Examples include�

ppers � �person�

person�id � ���

if �ppers
!id �� ���

���

printf��Id � �d�n�� person�id��

The type of data accessed is determined by the member name used to qualify the variable name� In
our example� person�idwill access an integer� while person�namewill access a string �a character
pointer	�

Since at any given time� the contents of the union variable may be one of several types �int
or string for person	� we must keep track what type of data is stored in order to access the
information correctly� Each time an object is stored in a union variable� it is the programmer�s
responsibility to keep track of the type stored� If an attempt is made to retrieve a type di�erent
from the type last stored� the result is sure to be strange and incorrect� The speci
c behavior is
implementation dependent�

To remember the type of object last stored in a union variable� it is common to store that

information in a variable� The best way is to declare a structure containing both the union variable
as a
eld and another
eld that indicates the type of data stored in the union� For example� we
can declare such a structure type and a structure array as follows�

����� UNIONS ���

�	 File� uniutil�c 	�

�include stdio�h!

�include ctype�h!

�include string�h!

�include �unidef�h�

�include �uniutil�h�

�	 Reads a list of items� Each item is either a string

or an integer�

	�

int readlist�struct record list��� int lim�

� int i�

char s�SIZE��

printf��Type Identifications For Persons on the List�n���

printf��Either a Name or an Id Number� EOF to quit�n���

for �i � �� i lim �� gets�s�� i""� �

if �isdigit�	s�� � �	 Is it a number$ 	�

list�i��ptype � INT� �	 If so� store type� 	�

list�i��person�id � atoi�s�� �	 and the ID number� 	�

�

else � �	 Otherwise� 	�

list�i��ptype � NAME� �	 Store string type� 	�

strcpy�list�i��person�name� s�� �	 and the NAME� 	�

�

�

return i� �	 Return no� of items� 	�

�

Figure ������ Reading Data into a Union Variable

�define NAME �

�define ID �

struct record �

int ptype�

union human person�

��

struct record list�MAX��

Now� as we read information about each element of list� if the information is numeric� we store it
as id� otherwise� we store it as name� We also store the type� ID or NAME in the member� ptype�

Figure ����� shows a function that reads identifying information about each person and stores
it in the union type member� Depending on the type of information read� it uses the appropriate
union
eld name� and stores the type in the ptype
eld of the structure� The loop body in the
function looks at the
rst character of the input string� s� If it is a digit� then the data is an id
number so INT is stored in ptype� and the string is converted to an integer �using atoi��	 and

��� CHAPTER ��� STRUCTURES AND UNIONS

�	 File� uniutil�c
 continued 	�

�	 Prints out the list of items� Each item is either a string

or an integer�

	�

void printlist�struct record list��� int n�

� int i�

printf��Identifications of People on the List�n���

printf��Either a Name or an ID Number�n���

for �i � �� i n� i""� �

if �list�i��ptype �� INT�

printf��Id number� �d�n�� list�i��person�id��

else

printf��Name� �s�n�� list�i��person�name��

�

�

Figure ������ Printing Information from a Union Variable

stored in the union id
eld� If the
rst character of s is not a digit� NAME is stored in ptype� and
the string is copied into the union name
eld�

It is now easy to write a function that prints the identifying information stored in the list� Since
each record includes the type of information stored in the union variable� it is easy to retrieve the
information correctly as shown in Figure ������

We now write a simple program that
rst reads a list of identifying information about a group
of people� and later prints the list� The identifying information may be either a name or an id
number� The structure and union declarations as well as constant de
nitions are included in the

le unidef�h shown together with the code in Figure ������

Sample Session�

			Union Variables
 Lists			

Type Identifications For Persons on the List

Either a Name or an Id Number� EOF to quit

John Kent

���

Jane Ching

���

Mary Smith

�D

Identifications of People on the List

Either a Name or an ID Number

Name� John Kent

Id number� ���

Name� Jane Ching

����� UNIONS ���

�	 File� unidef�h 	�

�define INT �

�define NAME �

�define MAX ��

�define SIZE ��

union human �

int id�

char name�SIZE��

��

struct record �

int ptype�

union human person�

��

�	 File� uniutil�h 	�

int readlist�struct record list��� int lim��

void printlist�struct record list��� int n��

�	 File� union�c

Other Source Files� uniutil�c

Header Files� unidef�h� uniutil�h

This program illustrates the use of union variables� It reads

a list of items identifying people either by name or by id

number� It then prints out the list� Each item is stored in

a union variable either as a name or as an integer� The list

is kept in an array of structure record� The structure record

has two members� the union variable and a variable that stores

the type of object stored in the union�

	�

�include stdio�h!

�include ctype�h!

�include string�h!

�include �unidef�h�

�include �uniutil�h�

main��

� struct record list�MAX��

int n�

printf��			Union Variables
 Lists			�n�n���

n � readlist�list� MAX��

printlist�list� n��

�

Figure ������ Header File and Driver Program for Union Example

��� CHAPTER ��� STRUCTURES AND UNIONS

Id number� ���

Name� Mary Smith

The above program can be written in many alternate ways� We have written the program to
illustrate the use of union variables�

���� Common Errors

Common errors occur when pointers are used to reference structures and their members� It is best
to use parentheses around dereferenced pointers� �	p��member� or to use the operator�
�� e�g�
p
�member� when referencing a member of a structure pointed to by a pointer�

���� Summary

In this chapter� we have described the last remaining data types provided by the C language�
structures and unions� A structure allows the grouping of various pieces of related information of
di�erent types into one variable� It is declared by de
ning a template specifying the type of each
data item stored in the structure and giving each member or �eld a name�

struct ��tag identi�er�� f
�type speci�er� �identi�er��
�type speci�er� �identi�er��
� � �
g ��identi�er��� �identi�er�� � � ���

Variables may be declared when the template is de
ned or� if a tag is used to name the template�
may be declared later using the tag�

struct �tag identi�er� �identi�er��� �identi�er�� � � ��

which allocates storage for all members� Fields of a structure variable may be accessed using the
�dot� ��	 operator�

�variable identi�er���member identi�er�

called qualifying the variable name� Such quali
ed structure variable expressions may be used like
the corresponding
eld type in a program� Structure variables may be passed to and returned
from functions� but it is more common to use pointers to structures to avoid excessive copying�
Members of a structure can be accessed with a pointer using the � � operator�

�variable identi�er� � ��member identi�er�

which is equivalent to�

�	 �variable identi�er�
��member identi�er�

���
� SUMMARY ���

We have illustrated the use of structures with various programming examples�
Finally� we have described the union data type� which is de
ned similar to structures� however�

has the semantics of only one of the member types being resident in such a variable at one time�
That is� a union allows several di�erent types of information to be stored in the same physical
space at di�erent times� For a union variable� storage is allocated only for the largest of the data
types which may reside in the variable�

Structures are a valuable tool for developing complex programs and data structures in an
e�cient and top down manner�

��� CHAPTER ��� STRUCTURES AND UNIONS

���� Exercises

�� Find and correct errors if any� What will be the output"

struct node �

int id�

int score�

�

�include stdio�h!

main��

� struct node 	px� x� y�

px � �x�

while �scanf���d �d�� px�id� px�score� %� EOF�

printf���d �d�n�� 	px�id� 	px�score��

�

�� De
ne a data structure� intflt� that will allow one to store either an integer or a
oat�
Read strings and convert them to either integers or
oats depending on whether there is a
fractional part present� Store the resulting values in an intflt type array� When the input
is terminated� print the stored values�

����� PROBLEMS ���

���	 Problems

�� Write the function printsortedlabels�� described in Section ���� and make the modi
�
cations to main�� to read a list of address labels and print them in sorted order by last
name�

�� De
ne a structure with the following members�

social security number

id number

name �last� first� middle�

exam score

Use the above structure for the data record of one student in a class of �� students maximum�
Write a menu�driven program that allows the commands� read data from an input
le into
an array of the above structure� print data on screen� save data into an output
le� sort the
data by a speci
ed primary key using pointers to the array� quit�

�� Modify Problem � to allow more than one exam up to a maximum of � exams� Use an array
of exam scores in the structure� Assume that the
rst three lines of the input
le include
course title and headings� The actual data starts with the fourth line�

�� Modify Problem � to compute and store a weighted average of the exam scores for each
student� Weighted average should be a member of the structure� Also allow for computation
of an average of any one or all the exams�

�� Modify Problem � to allow deleting one or more records� changing one or more records�
adding one or more records�

�� Modify Problem � so that it can read an input
le which may or may not contain a column
for the weighted average� Allow the user to output the data but specify which data
elds
are not to be output to a new
le�

�� Modify the above program to include scores for a number of projects up to a maximum of
��� Weighted average must now include exam as well as project scores� Allow a structure
member for a letter grade�

�� Modify the above program so it allows the user to perform the following functions� form
a class grade list for a new class� enter grades for a project or an exam� change grades for
a project or an exam� add or delete a student from a class list� calculate the average for a
project or an exam� calculate the weighted average for each student over the projects and
the exams� sort the data by a primary key� e�g� weighted average� exam�� proj�� etc�� sort
the data by a primary key and a secondary key� i�e� if two records have the same primary
key� then sort those records by a secondary key� plot a distribution of the weighted average
grades�

�� Write a program that keeps a membership list for a private club� The data
elds required
are�

��� CHAPTER ��� STRUCTURES AND UNIONS

name

spouse name if any

address� business� residence

telephone� business� residence

hobby interests

membership date

dues outstanding

other charges outstanding

The club has a limit of ��� members� Write a program that allows the club manager to�
maintain the club list and update it� send out a mailing list to all members with all data
about the club members� except for
nancial data� send out reminders to members about
the charges outstanding� post new charges and dues at regular intervals� post paid amounts
upon receipt�

��� Assume that the above club maintains a library of at most ��� books� Data for each book
consists of�

book number

title

author

co
authors

publisher

date published

subject

keywords

check out data�

name� address� phone

date checked out

data returned

charges� if any

Write a program to maintain the library including� search the library by book number�
author� title� subject� keywords� add new books� remove outdated books �all books older
than � years	� check out books� late charges at ���� per day if a book is out by more than
a month� write data to a
le for books overdue and charges�

��� Write a macro processor assuming that the macros do not have arguments� Use a structure
to keep a macro identi
er and its replacement string� Read an input
le which may have
macros� and create an output
le with macros replaced by replacement strings�

��� Write a macro processor� Assume that macros may have arguments� Use structures to keep
data about a macro�

��� Use a structure to represent a rational number� Write functions for rational number arith�
metic� Write a simple calculator program for rational numbers�

